
0

IN

' A DATABASE MANAGEMNT SYSTEM FOR

COMPUJTER-AIDED DIGITAL CIRCUIT DESIGN

THESIS

Sue A. Ehrhart
Captain, UJSAF

AFIT/GCS/ENG/BBD-4

3 0MAR 18

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSIT

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

iolh osi 1

AFIT/GCS/ENG/88D-4

0

A DATABASE MANAGEMENT SYSTEM FOR
COMPUTER-AIDED DIGITAL CIRCUIT DESIGN

THESIS

S Sue A. Ehrhart
Captain, USAF

AFIT/GCS/ENG/88D-4

* DTIC
SIELECTEArS MAR 1989ID

Approved for public release; distribution unlimited

I.

AFIT/GCS/EG/88D-4

A DATABASE MANAGEMENT SYSTEM FOR
COMPUTER-AIDED DIGITAL CIRCUIT DESIGN

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

i* Requirements for the Degree of

Master of Science in Computer Systems

*Acces sion For

NTIS GRA&I
DTIC TAB
Unannousced
Justification

Sue A. Ehrhart, B.S.

Captain, USAF Distributlon/

Availability Codes

Dist Speoi.al

December 1988 / .

Appzoved for public release; distribution unlimited

0m m m ll lI

Preface

The prototype AFIT Digital Circuit Design Environment proved to be

a capable design tool but it suffered from redundantly stored

information and a lack of flexibility. Circuit data was stored in all

the various formats used during a design session. Designs were

restricted to using only those TTLs that were originally provided with

the tool because, with TIL data was scattered throughout the

environment, new TTLs could not be easily added. The solution was the

development of a centralized database with an expandable library of TTL

components. Computer listings of the DBMS modules and utility programs

are not included in this document; however, they can be obtained

through the Air Force Institute of Technology, School of Engineering,

Wright-Patterson AFB OH 45433.

The success of this thesis effort is due in large part to my

faculty advisor, Captain Bruce L. George, untiring protagonist of the

AFIT Digital Citcuit Design Environment. His constant understanding

and encouragement made him a pleasure to work with. Thank you also to

Captains Mark Roth and Brian Donlan for their guidance as members of my

thesis committee, and to Captain Jorge da Silva Santos of the Brazilian

Air Force, for coming to my aid during the rough spots in the

development. Finally, I wish to thank my husband Ken and our daughter

Becky for the extra measure of love and support they gave while this

work was in progress.

Sue A. Ehrhart

ii

Table of Contents

Page

Preface ii

List of Figures v

Abstract vii

I. Introduction 1 - 1

Background 1 - 1
Problem Statement 1 - 3
Scope 1 - 4
Assumptions 1 - 5
General Approach 1 - 5
Sequence of Presentation 1 - 6

II. Literature Review 2 - 1

Commercial Package versus Custom Design 2 - 1
Database Models 2 - 2

Hierarchical 2 - 2
Relational 2 - 3

* An Object Oriented View of CAD Data 2 - 5
Suimary 2 - 6

III. Requirements Analysis and Design 3 - 1

Database Contents 3 - 1
* Original System 3 - 2

Central Database 3 - 8
Database Management System 3 - 12

Operations 3 - 12
Data Manipulation Language 3 - 15

Summary 3 - 17

IV. Detailed Design 4 - 1

Storage Structures 4 - 1
Access Structures 4 - 2
File Location 4 - 4

* Summary 4 - 5

iii

Page

V. Implementation.. 5 - 1

General Description. 5 - 1
DBMS operations. 5 - 2

Insert. 5- 2
Delete. 5- 7
Retrieve. 5 - 9

Utility Programs 5 - 14
Index. 5 -14
Addttl. 5- 14
Makedb. 5-is5

Sunmmary - 16

VI. Testing and Results. 6 - 1

Testing 6 - 1
Functionality Tests 6 - 1
Efficiency Tests. 6 - 2

Results 6 - 5
Functionality 6 - 5
Efficiency 6 - 5

suimmary. 6- 9

VII. Conclusion and Reconmmendations. 7 - 1

Conclusion. 7 - 1
Recomindations. 7 - 2

Appendix A: User's Manual for Database Utility Programs A - 1

Appendix B: Cdata Functions Used by the DML Module B - 1

Bibliography BIB - 1

Vita VITA.- 1

iv

List of Figures

Figure Page

1 - 1. Organization of AFIT's Digital Circuit Design
Environment 1- 1

3 - 1. Elements of "ttl.des" File 3 - 2

3 - 2. Elements of "ttl.dat" File 3 - 2

3 - 3. Elements of Engineering Workstation Chip Library . 3 - 3

3 - 4. Elements of Database Library 3 - 3

3 - 5. Elements of "temp.loc" File 3 - 4

3 - 6. Elements of "temp.icn" File 3 - 5

3 - 7. Elements of "temp.grf" File 3 - 5

3 - 8. Elements of "temp.ckt" File 3 - 5

3 - 9. Elements of "temp.iot" File 3 - 6

3 - 10. Elements of "temp.in" File 3 - 6

3 - 11. Elements of "temp.ind" File 3 - 7

3 - 12. Elements of "temp.dis" File 3 - 7

3 - 13. Elements of "temp.out" File 3 - 8

3 - 14. Elements of TTLS Relation 3 - 9

3 - 15. Elements of PINS Relation 3 - 9

3 - 16. Elements of CKTS Relation 3 - 10

3 - 17. Elements of ICONS Relation 3 - 10

3 - 18. Elements of LINKS Relation 3 -11

3 - 19. Elements of IOUT Relation 3 - 11

3 - 20. Elements of LIN Relation 3 - 11

3 - 21. Elements of LOUT Relation 3 - 12

3 - 22. Required Joins for Reconstructing TEMP Files . . . 3 - 15

3 - 23. Example of Insert Operation 3 - 16

v

Figure Page

3 - 24. Example of Delete Operation 3 - 17

3 - 25. Example of Retrieve Operation 3 - 18

5 - 1. Overall Implementation of the New DBMS 5 - 1

5 - 2. Implementation of the Insert Operation 5 - 3

5 - 3. Implementation of the Delete Operation 5 - 8

5 - 4. Implementation of the Retrieve Operation 5 - 10

6 - 1. Comparison of Circuit Design Memory Requirements . 6 - 6

6 - 2. Response Times of Circuit Insertion 6 - 7

6 - 3. Response Times of Circuit Deletion 6 - 7

6 - 4. Response Times of Circuit Retrieval 6 - 8

vi

AFI T/GCS/ENG/88D-4

Abstract

This thesis effort documents the design and implementation of a

relational database and associated database management system (DBMS)

for the AFIT digital circuit design environment, a graphics oriented

tool that allows circuits to be designed at a uniform, chip-level of

detail, checked for proper connections, and simulated. The approach to

this effort included a survey of existing methods of Computer-Aided

Design (CAD) data management, analysis of the data and data

manipulation requirements of the design environment, design of a data

manipulation language, and implementation of a DBMS to carry out the

manipulations. Implementation was done in the C programming language

and based on lower-level database routines found in C Database

Development by Al Stevens. Limitations encountered as a result of

using these routines are discussed along with the results of testing.

This effort also includes three separate database utility programs.

One allows new TrLs to be added to the database but does not provide

the ability to input the executable functions of those new TTLs. The

second provides the capability to rebuild corrupted index files, and

the third prepares floppy diskettes for data storage. A user's manual

is included for the operation of the database utility programs.

Recommendations for future work are also presented.

vii

0

A DATABASE MANAGEMENT SYSTEM FOR COMPUTER-AIDED DIGITAL CIRCUIT DESIGN

I. Introduction

* Background

Recent efforts at the Air Force Institute of Technology (AFIT) have

resulted in a prototype Computer-Aided Design (CAD) environment for

* designing two-dimensional discrete component digital circuits on a PC

AT compatible microcomputer. Figure 1 - 1 illustrates how the

environment combines three software programs, the graphic interface

* program, the InterConnect Expert (ICE), and the Logic Simulator

(LOGSIM), into one complete circuit design package for use by students

in digital logic courses at AFIT and, eventually, at other learning

institutions.

Logic InterConnect

Simulator Expert

(LOGSIM) (ICE)

Graphic

Interface

Program

0 Fig. 1 - 1. Organization of AFIT's Digital Circuit Design Environment

1- 1

S

The user interface allows a designer to construct a small, single

* screen circuit by selecting components from a library of 34 pre-

defined integrated circuit chips (TTLs) and then wiring the connections

between those components on the screen (1). ICE can be used to check

* the circuit for possible wiring errors, and LOGSIM, to simulate the

circuit's operation (13; 5). Designing circuits on the environment

could, in some cases, replace hardware designing but its main purpose

* is as a pre-hardware design tool to save the designer time and

frustration wondering whet'er a problem is being caused by a design

flaw or hardware problem.

* While the environment currently does an adequate job of storing and

manipulating all of the data it requires to perform its purpose, there

are some problems both with what is being stored and how it is being

* stored.

The inability to obtain a listing of available circuits is a

problem caused by what is or, more accurately, is not being stored. To

* retrieve a circuit, the designer must remember the filename he assigned

to it. There is no information currently stored to remind the designer

of the function of a circuit or what stage of development it may be in.

* The problems caused by how data is stored are more serious and

can be divided into two areas, the TTL library and the circuit data.

Information about the 34 TTLS in the library is found in each of

* the three programs in the environment. The interface maintains

information for graphic representation, ICE maintains pin assignments,

and LOGSIM maintains functions to transform input signals into output

* signals. To add a new TTL to the library would require software

1 - 2

modification and recompilation, essentially restricting the designer to

using only those components currently available.

Information pertaining to each circuit design is stored in as many

as ten files on any disk drive the designer specifies (1). Each file

contains the set of information required for a particular activity and

in those cases where multiple activities require the same piece of

information, Lhat information is stored in multiple files. Storage of

redundant information is a concern when working with microcomputers

because of the limited fixed disk space they have available.

Each circuit file contains what would be the result of a database

* query if the environment had a central database and a database

management system (DBMS) that would allow such queries. A commercial

DBMS was not considered for use with the environment however, primarily

so it could be distributed without licencing restrictions.

Problem Statement

The primary goal of this effort is to implement a central database

and associated database management system (DBMS) specifically tailored

to the AFIT digital circuit design environment. The secondary goal is

to develop a utility program for inserting new TTLs into this database.

The addition of a central, easily expandable database will

increase the environment's usefulness. The database, in conjunction

with its DBMS, should reduce memory usage due to redundant data and

increase flexibility by allowing each of the environment's component

programs to access needed information for itself, without relying on

the interface program to provide the right pieces in the proper format.

1 - 3

mwlmmmmmmm|I1-3 I

Scope

This effort addresses the design, implementation, and testing of a

database and an associated DBMS to store and manipulate two-

dimensional discrete component digital circuit CAD data.

A limited Data Manipulation Language (DML), based on the C

programing language, is defined to provide the required access to the

database.

A DBMS consisting of the minimum functions required for current

capabilities and foreseen enhancements of the environment was

implemented on a Zenith 248 microcomputer. Because the environment is

stand-alone and single-user, no concurrency control measures were

necessary. Crash recovery consists entirely of user-initiated back-

ups. The DBMS does not perform integrity checks, checking input data

* against valid values specified in a data dictionary, because the data

is created and accessed only by the software programs, not directly by

any designer. It is left up to the using program to ensure database

* queries are properly formatted and that fields contain valid values.

Data security for circuit designs is accomplished by forcing design

data to the floppy disk drive and having each designer maintain his

circuits on his own floppy diskette. The TTL database is protected by

allowing the casual user no access. A separate utility program is

provided to allow a data manager to add new TTLs.

This effort does not include adding the capability to input the

executable function of a TIL. This means that LOGSIM will not be able

to simulate the operation of any new TrLs added via the utility

* program.

1-4

.. . .-S ~ mam mi a ii nl m D a

Finally, while not actually part of the DBMS, this effort

includes the conversion routines necessary to recreate the file

structures used by the graphic interface program.

* Assumptions

It is assumed that the reader has a basic knowledge of database

theory, particularly in the area of relational databases. It is also

assumed that the reader has a basic knowledge of the workings of TILs

and the design of digital circuits.

General Approach

This effort was accomplished in four stages. The first stage

included a literature review, or survey, of the data storage techniques

used in similar CAD applications to determine the most appropriate

database model. Meetings were held during this time with Capt Santos

and Capt Matuszek, who were involved in concurrent enhancements to the

environment, to reach agreement on what information is needed and how

it should be displayed and manipulated (11; 8). The second stage

involved analyzing the environment's three component programs to

determine the precise format of all data entities to be stored in the

database. The logical organization of the data finalized during this

stage, and the data manipulation language defined. The detailed design

and implementation of the database and the DBMS took place during the

third phase. The DBMS was written in the C programming language to

conform with the existing programs. The fourth and final stage was the

testing and evaluation of the DBMS.

1-5

. 0- .. = , , m nnm n m =ll~

Sequence of Presentation

* Chapter 2 provides the results of a survey covering data models

used by similar CAD applications and identifies the data model selected

for use. Chapter 3 identifies the required data elements and justifies

* their logical organization. Chapter 4 provides the index structure and

the detailed design of the database and DBMS program. Chapter 5

discusses the operation of each module of the DBMS as it was

* implemented. Chapter 6 contains an evaluation of the test results and,

finally, Chapter 7 contains the concluding remarks and specific

recommendations for areas of improvement and further research. A

* user's guide for the database utility programs is included at Appendix

A.

1-6

0-• , , ,ai

II. Literature Review

This phase of the thesis effort involved a survey of Computer-

Aided Design (CAD) applications similar in nature to the discrete

component digital circuit CAD environment developed at the Air Force

Institute of Technology (AFIT). The goal was to find the various ways

CAD data is being represented and select the method best suited to

AFIT's CAD environment.

Commercial Package versus Custom Design

While existing database management systems are adept at handling

traditional business applications, usually working with numbers or

strings of characters, the characteristics of CAD data make it

difficult to store and manipulate. Graphic images in general, and

computer-aided design data especially, are highly complex in nature.

Data associated with graphic images can be oriented in space, for

example, and viewed from different angles and from different levels of

detail. In addition, some designs, such as the digital circuits AFIT

is concerned with, can be simulated on the computer. This simulation

requires the storage of time-sensitive input parameters and their

associated time-sensitive responses.

There has been an increasing number of CAD applications in recent

years. and the interest in CAD data management has risen accordingly.

Some commercial CAD software packages, such as TEO/Electronics, are

available (9). In some cases, however, this option is being turned

down in favor of custom designed software and the reason for doing so

is easy to see. Each CAD application requires some features peculiar

2-1

0mmunnnmmnn ~ lnmn i

to it and any commercial package that can meet those highly specific

* requirements is probably too specialized to be profitable and remain on

the market. If the requirements don't allow for flexibility, a custom

designed CAD package and database is the answer.

Database Models

Chang and Kunii conducted their own survey of methods for CAD data

• representation and said:

The three main models for a traditional alphanumeric data base
are the relational, the network, and the hierarchical. The
varying requirements of the pictorial data base have led to

• modifications and extensions of these traditional models; the
relational and hierarchical models have attracted the most
attention (4:14].

Hierarchical. A hierarchical database is one in which records, or

sets of attributes, are connected in a Parent-Child relationship.

While one parent record may be linked to many children, a child record

can be linked to only one parent, resulting in the hierarchical model's

characteristic "family tree" structure (7:143). In hierarchical design

databases, each level of the tree corresponds to a particular level of

detail in the design (6:318; 10:40). In that sense, the hierarchical

model conforms well to the concept of building a complex design in

progressive stages, basic components making up larger components and so

on up the tree until the design is complete.

Some CAD database designers choose the hierarchical structure

because it offers a convenient way to divide a design into segments,

either to distribute the work among several people, or to fit a large

design within the confines of a computer screen. In all but the most

2-2

0 ,.=. ,=.=,rm mmmn~n /

trivial cases, for example, a complete circuit design at the lowest

level of detail would probably not fit on one screen, so groups of

circuit components would be represented by a "black box." Individual

"black boxes" could then be selected for viewing in greater detail.

This representation can be particularly useful for mechanical

designs, where the "black box" would actually be the outside surface of

a complex component whose internal workings are normally hidden at that

level. It is impossible to both show all of the pieces of a three-

dimensional object simultaneously and show the pieces in their proper

relationships to each other. The "exploded view" does not accurately

represent what the actual object looks like.

There are drawbacks to using the hierarchical model for

applications such as circuit design. It would be difficult to envision

the physical layout and interconnections of the circuit, for example,

without printing out a copy of each component design and pasting them

together. It further complicates the process of simulation, too.

Although TEO/Electronics can simulate the operation of a multi-level

circuit, LOGSIM, the simulator used by AFIT's CAD environment, does not

have this ability (9:131; 5).

Relational. Data in the relational model is organized as a

collection of tables (7:45). The data in these tables can, when

necessary, be combined, or related, by matching key attribute fields

from two or more tables. A problem with the relational model is that

each table entry can contain only one value for each field in that

table. Because each design, or circuit in this case, is unique and can

be made up of any number of chips, the only way to represent a circuit

2-3

,0

as a single relation or table entry is to set an upper limit on the

* number of chips per circuit and then leave space for each circuit to

have the maximum number. This approach would waste a great deal of

space and place an unnecessary restriction on circuit size.

• Another possible solution to this problem is to represent a circuit

not by one relation, but by a set of relations. Chang and Kunii

discuss a CAD system that stores individually unique images by the

• features they have in conon (4:14). For example, while all circuit

designs are unique, chips and wires are features conon to every

circuit. All circuit designs, regardless of the number of chips or

other features it has, can be represented by a relatively small number

of relations if each feature that could possibly vary in number from

one design to the next was organized as a separate relation.

The database Capt Adams designed for AFIT's digital circuit design

environment is relational and uses essentially this same method,

organizing data by features. Each circuit designed on AFIT's system

results in zero or more entries into each of 10 relations. Those

relations correspond to five categories of information that pertain to

a circuit: interface information, graphical display, electrical

* continuity, expert system interface, and simulator interface (1:3-2).

Where the hierarchical model was best for viewing designs from many

different levels of detail, the relational model is best suited for

two-dimensional designs, like digital circuits, where the entire design

can be represented at the same level of detail. Although it might be

possible to represent a hierarchy of detail levels with the relational

model, it is not desirable to use "black boxes" because, as stated

2-4

.0m m m i m | m m

earlier, envisioning the physical layout would be difficult. Different

levels of detail could be represented as "white boxes", where chunks of

the design were thought of as a single component but where all of the

internal workings remained visible. To do so, however, would require

adding another field to the relations for each level maintained. Then,

like limiting the number of chips allowed in each design, the maximum

number of levels of detail would have to be set and used for all, again

* wasting space and placing artificial restrictions on the design

process.

An Object Oriented View of CAD Data

Batory and Kim describe an excellent example of a relational model

for the storage of circuit design data (2). The difference between

their model and the relational model described earlier is that they

view designs as objects, not simply as collections of common features,

and all objects consist of two parts, an interface, or external

characteristics, and an implementation, or internal characteristics.

They say, "The interface of a circuit specifies the function of the

circuit and lists its inputs and outputs" (2:324). The interface

would not be made up of chips or wires. It would be a "black box" that

could, given some inputs, perform a function and produce some outputs.

The chips and wires inside the "black box" would make up the

impl'.mentation portion of the circuit.

The same data that was present in the earlier relational model is

still there, organized as sets of relations based on common features,

as before. The only difference is that some of the relations together

2- 5

! i

make up the interface and some other relations together make up the

implementation. This separation of interface and implementation allows

a form of version control.

Different designers can use different internal components to

building a circuit, or make connections between the internal components

in a different manner, and yet still create circuits that perform the

same functions. These circuits would be different versions of the same

circuit type. It could be useful to be able to identify all of the

circuits of the same type.

According to Batory and Kim, "all versions of a design object share

the same interface description and differ only in their implementations

descriptions" (2:323). All the circuits of the same type could easily

be found, then, if all circuit implementations were associated with

both a type identifier and version identifier.

Summary

The complex structure of CAD data requires careful consideration

when selecting the most appropriate data model for a particular

application. It appears from the surveyed applications, when either

the physical structure of the design object is three-dimensional, or it

is logically viewed at varying levels of detail, hierarchical is the

most appropriate data model to use. If .both the physical and logical

structure of the design object is two-diiensional, however, as in this

application, the relational data model is best.

2-6

0 == asrm Rmm= mNmmim

III. Requirements Analysis and Design

A requirement of this thesis effort was that the central database

and its associated database management system support the system as it

originally existed. Requirements analysis therefore consisted of a

thorough examination of the existing system. First, the individual

pieces of data being used by each of the three programs in the design

environment were studied to determine the required contents of the

central database. Then, a study was made of how these data elements

were used, most importantly how they were combined, to determine the

operations and join strategies required in the DBMS.

The remainder of this chapter is organized into two main sections,

the first section discusses the content and organization of the

original system and the new central database. The second section

covers the DBMS, the operations required to support the original

system, and the data manipulation language developed to support those

operations.

Database Content and Organization

Throughout this section, please note that the names given to the

data fields in each figure may not match those assigned to them in the

source referenced. Changes were necessary for consistency across the

three programs of the design environment as well as with the new

central databa3e. Equivalent pieces of information are assigned the

same name.

Please note also that in the figures used in this section, when an

• ellipsis (i.e. ...) appears between two fields on the same line that

3-1

.... .. 0 ,~~ i mm lalii U iliI

means some fields have been omitted from the figure. When an ellipsis

appears at the beginning of the second line of a figure it indicates

continuation.

Original System. Data elements to be included in the new,

centralized database were found in two areas. Information pertaining

to TTLs was found hardcoded into the ICE and LOGSIM programs, and in

two separate files used by the graphics interface program. Information

pertaining to circuits was found stored as sets of files. The

organization of the data elements from both of those areas is described

below.

TTL Data. Those attributes required to graphically represent a

TTL were found in two files used by the graphic interface program,

"ttl.des" and "ttl.dat" (1:3-4; 1:3-3). Figures 3 - 1 and 3 - 2 show

the data elements that made up those files.

TTL I TTLDESC

Fig. 3 - 1. Elements of "ttl.des" File

TTL NO OFPINS I
Fig. 3 - 2. Elements of "ttl.dat" File

The ICE program used two hardcoded tables, the Engineering

Workstation Chip Library and the Database Library, to store the

information it needed to make sure TTLs are properly connected (13:56;

3-2

13:58). Figures 3 - 3 and 3 - 4 show the data elements contained in

those tables.

TTL TTLDESCJ

Fig. 3 - 3. Elements of Engineering Workstation Chip Library

*TTL IPIN IGATE IVALUE ITTL DESC

Fig. 3 - 4. Elements of Database Library

TTL information in the LOGSIM program is organized as a CASE

statement associating each TTL name with its executable chip

configuration routine (5:A-31). Because this thesis effort does not

include storing the executable function of the TTLs in the central

database, this information is not considered any further in this

section.

Circuit Data. The information required to represent a

particular circuit design was found to be stored by the graphic

interface program into anywhere from two to ten files, depending on the

stage of development or analysis that the design was in. The remainder

of this section describes the data elements found in each of those

files.

Note that there is no field in any of these files to identify the

design they belong to. This is because the design identifier was

actually part of the file name. When a design was retrieved to be

3-3

0 l I I

worked on further, copies were made of any files beginning with the

desired design identifier and renamed "temp." All changes made during

the design session are made to these "temp" files.

The icons referred to in these files are the entities in the design

that are connected to each other. They are uniquely identified by type

and instance number. There are five types of icons: TTL, power,

ground, clock, and input port. All icons except TTLs are considered to

have only one pin, or connection point.

One of the first files created, "temp.loc", contained information

about the space occupied by each icon including the dimensions of the

graphic image and a location reference point (1:4-21,22). Figure 3 - 5

shows the data elements contained in "temp.loc."

LOCX jLOCY HIGH jWIDE ICON

Fig. 3 - 5. Elements of "temp.loc" File

Another of the first files to be created, the "temp.icn" file

contained further information used in the display of icons, such as the

color and the title (1:4-22,23). The title could be either the number

of the TTL or a two character input port identifier. Neither the user-

specified position or the system-assigned position are the same as the

location reference point contained in "temp.loc." Some redundancy was

present, however, because the system-assigned Y-coordinate was always

the same as the user-specified Y-coordinate. Figure 3 - 6 shows the

data elements contained in "temp.icn."

3-4

0

ICON I TITLE I USER_X USERY I SYSTEMX I USERY ICOLOR I

Fig. 3 - 6. Elements of "temp.icn" File

The "temp.grf" file contained information for displaying

connections as a series of twelve points, or ten line segments,

together with the link identifier and color (1:4-23). This format not

only limited the number of turns in any link to ten, but in those

cases where fewer than ten turns were taken, ten turnr were

"fabricated" by filling the remaining fields with line segments of

null length, starting and ending at the same point. Figure 3 - 7

shows the data elements contained in "temp.grf."

*- ... I-X_12 IY_12 ILSOLOR jLINK
Fig. 3 - 7. Elements of "temp.grf" File

The "temp.ckt" file contained further information to identify links

as pin to pin connections (1:4-23,25). The comment fields (OCOMMENT,

I_COMMENT) were found to be "for future use" and filled with strings of

*'s. Figure 3 - 8 shows the data elements contained in "temp.ckt."

* 10ICON 0O-PIN 0 OJTITLE 1 0_-COMMENT ILINK
*. I ICONq I-PIN I I ITITLE I ICOMMENT

Fig. 3 - 8. Elements of "temp.ckt" File

3-5

0

The "temp.iot" file contained the information produced by the ICE

program (1:4-25). All problems with a circuit design were categorized

by ICE as being either a "questionable link" or a "missing connection"

and this file could contain one or more of either one, both, or none of

these problems. If there was some problem that prevented analysis

however, the "temp.iot" file could also contain a short message

indicating the cause of the problem. The error message would not be

stored in the new database. Figure 3 - 9 shows the data elements

contained in "temp.iot."

I PROBDESC ERR-CODE

Fig. 3 - 9. Elements of "temp.iot" File

The "temp.in" file contained the input data stream assigned to each

input port for use by the LOGSIM program (1:4-25,26). The only icon

type found in this file is "input port" and because has only one

connection point, no pin information is needed. Figure 3 - 10 shows

the data elements cntained in "temp.in."

1ICON I INPUT

Fig. 3 - 10. Elements of "temp.in" File

The "temp.ind" file contained the same data elements as found in

the "temp.in" file with the addition of the title of the input port

3-6

(1:4-26). This file was used to display LOGSIM input data in human-

readable format. Figure 3 - 11 shows the data elements contained in

"temp. ind."

I ICON TITLE INPUT

Fig. 3 - 11. Elements of "temp.ind" File

The "temp.dis" file contained the TTL pins designated as monitoring

points for use by the LOGSIM program (1:4-26,27). As was the case with

the "temp.ckt" file, the comment field was designated as "future use"

and always contained a string of *'s. Figure 3 - 12 shows the data

elements contained in "temp.dis."

ICON ITITLE PIN ICOMMENT

Fig. 3 -12. Elements of "temp.dis" File

The "temp.out" file generally contained the output produced by the

LOGSIH program for each of the monitored points specified in the

"temp.dis" file (1:4-27). The output would be in binary, "1" and "0"

format. If there was some error that prevented simulation however, the

"temp.out" file could also contain a short message indicating the

reason for simulation failure. The error message would not be stored

in the new database. Figure 3 - 13 shows the data elements contained

in "temp.out" when the simulation is successful.

3-7

S II

ICON TITLE PIN OUTPUT

Fig. 3 - 13. Elements of "temp.out" File

The tenth file, "temp.wav", contained a combination of the

information contained in "temp.ind" and "temp.out" (1:4-27). The only

difference is that the input and output fields are formatted for

graphical waveform display instead of binary.

An eleventh file, "temp.txt" was found to be used during the

design session to pass information to ICE (1:4-25). Because the ICE

program was large and overlaid the graphic interface program, the

presence of the "temp.txt" file was also used as a flag to indicate to

the interface program whether it was just beginning execution or if it

was, instead, returning from ICE. "Temp.txt" was never saved when a

session was ended however, and is not considered here further.

Central Database. The original method of storing circuit and TTL

information, as outlined in the preceding section, resulted in

redundant data and wasted memory. The eight relations, whose

organization is described in this section, were desigied to store all

of the data elements identified to this point, as well as the

additional information required to provide a "circuit directory," as

compactly as possible. The key fields in each relation are shown

underlined in the figures. A complete description of the central

database can be found in the source code file "circuit.sch."

TTL Data. The two relations defined to contain TTL data, TTLS

and PINS, are described in the following section.

3-8

The TTLS relation contains data pertaining to TTLS as whole

entities. It records the identifying number, the number of pins

associated with it, its description and degree of fanout. FANOUT was

not mentioned as a data element in the existing documentation, but was

found to exist in the actual program. The dimensions of the TTL are

not stored because they are calculated by the graphi-s interface

program based on the NOOF PINS attribute. Figure 3 - 14 shows the

data elements contained in the TTLS relation.

TTL NOOF PINS TTLDESC IFANOUT

Fig. 3 - 14. Elements of TTLS Relation

The PINS relation contains an entry for each pin of a TTL. Figure

3 - 15 shows the data elements contained in the PINS relation.

TTL P IN GATE VALUE

Fig. 3 - 15. Elements of PINS Relation

Circuit Data. The six relations used to store information

related to circuit designed are described in the following section.

The CKTS relation contains the new information required to support

a circuit directory. Figure 3 - 16 shows the data elements contained

in this relation. Some elements may not be used in the design

environment currently, but are included for possible future use.

3-9

ICKTDESC STATUS OWNER I MAXHIGH MAXW IDE

Fig. 3 - 16. Elements of CKTS Relation

In the original system, users specified an eight character filename.
0g

Here, it is reduced to six alpha-numeric characters but remains user-

specified. This was considered preferable to using a system generated

identifier, not only to simplify programming but also for flexibility.

There are more definitions to the term "version" than just the one

described by Batory and Kim (2) and the designer is free to use the

identifier and description fields and devise his own system for keeping

track of his designs.

The ICONS relation contains information pertaining to the icons in

the circuit. Figure 3 - 17 shows the elements in this relation.

CKTS ICON TITLE USERX USERY SYSX

*... LOC_X LOCY HIGH WIDE I -COLOR

Fig. 3 - 17. Elements of ICONS Relation

The dimensions of earh icon is stored here and not in the TTLS relation

because there are other types of icons involved, and the dimensions of

each of them are calculated by the graphic interface program based on

different criteria.

The LINKS relation contains information pertaining to the

connections. Figure 3 - 18 shows the data elements in this relation.

3 - 10

WCKT LINK 0_ICON 0PIN 0_COMMENT IICON I-PIN

... ICOMMENT j XI Y_ ... X2 Y_12 LCOLOR

Fig. 3 - 18. Elements of LINKS Relation

Please note that, according to relational database theory, because there

are a variable number of line segments associated with each link, this

relation is not normalized and should be broken into two relations, one

for links and one for line segments. To simplify storage and retrieval

however, the decision was made to continue storing each link with a

fixed number of line segments. The small amount of redundant data

stored in the form of null length line segments is offset by the amount

of overhead that would be required to maintain the second relation.

The IOUT relation contains the problem statements issued by the ICE

program. Figure 3 - 19 shows the elements in this relation.

CKT PROB DESC ERR-CODE

Fig. 3 - 19. Elements of IOUT Relation

The LIN relation contains the input data streams required by LOGSIM.

Figure 3 - 20 shows the data elements included in this relation.

I CKT ICON IINPUT]

Fig. 3 - 20. Elements of LIN Relation

3 - 11

And finally, the LOUT relation contains the output of each point

monitored by LOGSIM. Figure 3 - 21 shows the data elements included in

this relation.

CK I C I I LI .1 OUTPUT COMMENT

Fig. 3 - 21. Elements of LOUT Relation

Database Management System

Operations. As mentioned at the beginning of this chapter, the

DBMS must perform all of the operations necessary to support the

original system's functions. The following is a discussion of each of

these functions, first those involving circuit data and then those

Involving TTL data, and the DBMS operations required to support them.

On Circuit Data. As could be expected, because the purpose of

the system is circuit design, the majority of functions performed by the

system relate to circuit data. A discussion of each of these functions

can be found below.

Insert. When the original system "saved" a circuit

design, copies of the TEMP files were made, renamed by the designer, and

stored to whatever disk drive and directory he specified. Using the new

central database, the insert operation reads information from a known

place, the TEMP files, and stores it to a known place, the appropriate

relations. For reasons discussed in detail in Chapter 4, the relations

themselves are stored on the "A" drive. Only the information stored in

the CKTS relation, needs to be obtained from the designer for input.

3 - 12

Delete. Deletion of circuit designs was not actually a

function of the original system. The operating system command "Del

<filename>.*" served the purpose. Using the new central database,

however, this would not be possible because circuit designs are no

* longer stored separately. This function had to be added to the original

system. The DBMS delete operation removes information from a known set

of relations, again, stored on a known drive. Only the circuit

identifier needs to be obtained from the designer and input to this

operation.

Retrieve. When the original system "retrieved" a circuit

• design, working copies, or TEMP files, were made for each file bearing

the designer-specified filename. To support the function of the

original system, the DBMS must be able to perform the retrievals

* necessary to reconstruct these TEMP files. If this were the only

retrieval function, the retrieve operation would need only know the

circuit identifier, because the information is being copied from a known

place to a known place, but with the central database other retrievals

become necessary. For example, obtaining a directory of circuit designs

was originally handled by the operating system. The command "Dir *.LOC"

served this purpose. Again, as with the delete operation, this does not

work with the new central database because each circuit design is not

stored separately. This information must be retrieved. Still more

retrievals of TTL data will be discussed in the next section.

Given that the results of the retrieval will be put in a known

place, the information required to perform a general retrieval can be

clearly pictured in the form of an SQL query. SOL is a well known,

3 - 13

commercially available relational database query language whose queries

typically consist of three parts, or clauses (7:71):

Select : the data elements

From : the relations the elements should be taken from

Where : the conditions to be tested for

Analysis of the retrievals performed by the system showed that

"select" always contains multiple data elements. Only in the retrieval

required to reconstruct TEMP.CKT are tuple variables required to

distinguish between multiple elements with the same name. Figure 3 - 22

shows that again with the exception of the retrieval to reconstruct

TEMP.CKT, "From" always contains one or two relations. TEMP.CKT

requires tuple variables to distinguish between multiple copies of the

same relation. Finally, "where" was found to always contain either one

or two entries. The first entry is either the TTL or circuit

identifier, or a wildcard symbol to indicate a directory of all entries.

The second entry is used in requesting TTL data pertaining to a specific

PIN. Database entries are tested for equality with the values contained

in the "where" clause.

Join Strategies. Further examination of Figure 3 -

22 shows that in all cases where data from more than one relation is

required, the ICONS relation is one of those Included. The joins are

performed using the ICON identifier field(s) present in each of the

relations being joined.

Modify. Throughout the design session, all changes made

to a circuit are recorded only in the TEMP files not to the original, or

"database" files. This is consistent with the trial-and-error nature of

3 - 14

TEMP FILE REQUIRED RELATIONS

.LOC ICONS

.ICN ICONS

.CKT LINKS, 2 X ICONS

.GRF LINKS

.IOT IOUT

.IN LIN

.IND LIN, ICONS

.DIS LOUT, ICONS

.OUT LOUT, ICONS

Fig. 3 - 22. Required Joins for Reconstructing TEMP Files

the design process. Only when the designer is satisfied with the design

is it "saved" or inserted into the database. "Modify" is not required.

On TTL Data. Because the TTL database of the original system

is static, the only function performed on TTL data was retrieve, either

to get information regarding a single TTL, a single pin, or a TTL

directory. For the protection of the TTL database, this remains the

only function allowed within the context of the design environment. To

increase the usefulness of the system, a separate utility program allows

TTL data to be inserted, deleted, and modified. These operations are

not part of the DBMS designed to support the functions of the original

circuit design environment, however, and will not be considered here.

Data Manipulation Language. The data manipulation language (DML)

is the means by which the users, in this case the three programs that

make up AFIT's circuit design environment, invoke the operationse
supplied by the database management system. Because the three using

programs are all written in the C programming language, it was most

convenient to design a C-based DML, one that could be embedded directly

3 - 15

....... Snuu~ n mmn m n

in the code of the using program and compiled normally, without the

* assistance of a preprocessor. The format settled upon, that of a

parameterized subroutine call, is based on examples given in C Database

Development by Al Stevens (12:135).

The DML consists of a total of three subroutine calls, one for each

of the operations supported by the DBMS. The remainder of this chapter

is dedicated to a detailed discussion of each of them.

Insertion. The format of the insertion subroutine call is:

Insert(Address)

The single parameter, Address, is the address of a data structure

* containing information to identify the circuit being inserted. With the

exception of the last two fields, MAXHIGH and MAXWIDE, the information

in this structure is obtained from the designer. In the example shown

in Figure 3 - 23, MAXHIGH and MAXWIDE are left blank because they are

not currently being used by the system. All other information relating

to the circuit is assumed by the DBMS to be in the TEMP files.

tinclude "circuit.cl"
main()
1 o
static struct ckts a-circuit ("CKTID"

"The description can be 65 char",
"Status ",
"Designer field is 25 char",
" ,, .

insert(&this circuit);

Fig. 3 - 23. Example of Insert Operation

3 - 16

Delete. The format of the deletion subroutine call is:

Delete(CKTID)

The single parameter, CKTID, is the six character alphanumeric

identifier of the circuit to be deleted. Figure 3 - 24 shows an example

of the delete operation.

main()
I
static char this-circuit[] = "CKTID";

delete(this circuit);
j

Fig. 3 - 24. Example of Delete Operation

Retrieve. The format of the retrieval subroutine call is:

Query(Select,From,Where)

The three parameters, Select, From, and Where, are each addresses of

lists, or arrays. The lists contain data elements, relation names, and

test conditions, respectively. The last entry in each list, as shown in

the example at Figure 3 - 25, is a "terminator" value.

0

Summary

The data elements used by the original system were identified and

* organized into a central database consisting of eight relations: TTLS,

PINS, CKTS, ICONS, LINKS, IOUT, LIN, and LOUT. The operations necessary

to support the original system's functions were found to be insertion,

* deletion, and retrieval. A simple data manipulation language consisting

3 - 17

of three commands, one for each of the operations supported, was

constructed. Based on the C programming language, the commands are

formatted as parameterized subroutine calls.

#include "circuit.cl"
main()

I
static int select[] = {ICON,TITLE,INPUT,O};
static int from[] = (LIN,ICON,-l);
static char *where[] = ["CKT ID","O");

query(select,from,where);
}

Fig. 3 - 25. Example of Retrieve Operation

3 - 18

IV. Detailed Design

The database management system constructed for AFIT's circuit

design environment uses the record-manipulating functions of Cdata as

the basis for implementing the operations defined in the previous

chapter. Cdata, "a library of C functions that do for you what a DBMS

would do," is described in detail in C Database Development (12:53).

The primary advantages of using Cdata over a commercial DBMS are given

as: "the efficiency of the resulting system, the absence of licencing

costs, the control you have over the DBMS and its destiny, and the open

architecture of the database files and indexes" (12:53). The database

files and indexes used by the Cdata functions, and ultimately by this

circuit design DBMS, are described in this chapter, along with a

discussion of where the various files are stored and the overhead

required.

Storage Structures

According to Korth and Silberschatz, storing each relation in a

separate file is an approach "well suited to database systems designed

for personal computers" (7:248). It is this approach that Cdata takes.

Each relation is stored in its own file identified by <relation

name>.DAT. The file consists of a header record and a series of fixed

length data records. When the database is first initialized,

naturally, only the 10 character long header record is present

(12:119).

The header file consists of three fields: a pointer to the first

record in the file, a pointer to the next available position, and the

4-1

length of the data records. The pointers are of type LONG and are

capable of referencing up to 232 records (12:118). This number is more

than sufficient for the purposes of this DBMS.

The length of the data records is determined by the lengths of the

* individual data elements that make up the relation. "Cdata stores data

values in files as null-terminated ASCII strings, regardless of the

data types" (12:119). Because every data element is stored as a

* character string, even those defined in the schema as being of numeric

type, the length of the record can be calculated by summing the

individual element lengths and adding one for the null character that

* terminates each element in the relation.

The high level Cdata functions for maintaining the database, those

used in the implementation of the circuit design DBMS operations, can

be found in the source code file "database.c" (12:134). Lower level

functions for maintaining the data files are grouped together in the

source file "datafile.c" (12:151).

Access Structures

Cdata provides only a single access mechanism, a balanced tree

structure, or B-tree index of key values (12:119). Given the nature of

the operations performed on the circuit design database, this is not a

particularly good access mechanism, but it was readily available and

time constraints precluded the development of a more efficient

mechanism.

The key-value index performs efficiently only in those cases where

directories of TTLs or circuits are requested, or when the information

4-2

regarding a single TTL or a single pin of a TTL is requested. In the

majority of cases, however, we aren't lookinq for a particular record

from a relation, but rather all of the records pertaining to a

particular circuit identifier. Because we cannot supply the whole key

value we are forced to do a sequential reads of the relations, testing

for a match to the circuit identifier.

The index file associated with each relation is identified by

<relation name>.X01. Each file consists of one header record and a

variable number of node records. The number of node records present in

the index file depends on the number of data records present in the

corresponding data file. The number of data records each node can

support is given by the equation:

m - ((NODE - ((sizeof(int)*2) + (ADR * 4))) / (len + ADR)) (9:161)

In this equation, len, the length of the data record being indexed, is

the only true variable. The number of data records supported by each

node varies inversely with the size of the data record.

Header records and node records are each 512 characters long.

Again, juit as with the data files, when the database is first

initialized only the header record is present.

The header record contains the following information: the pointer

to the root node, the length of the key, the maximum number of keys per

node, a pointer to the last node that was deleted, a pointer to the

next available node that can be added, a "lock" status flag, a pointer

to the leftmost node, and a pointer to the rightmost node (12:159).

4-3

The node record contains the following information: a "nonleaf"

flag, a pointer to the parent node, a pointer to the left sibling, a

pointer to the right sibling, a count of the keys pointed to, a pointer

to the node containing the preceding key values, the key values and

their associated pointers, and finally, a spill area for insertions

(12:159).

The definition of the B-tree structure and the functions for

maintaining B-trees are grouped together in the source file "btree.c"

(12:158).

File Location

The two entities involved in circuit design, TrLs and circuits,

have characteristics requiring that they be located apart from one

another. The TTL database, on one hand, will normally be much smaller

than the circuit database. It is required to be present for every

user, and, not subject to frequent change, it is protected to the

extent that it cannot be modified without the separate utility program.

The circuit database, on the other hand, can conceivably become quite

large. And, unlike the TIL database, there are no security measures in

place that would protect the circuit database and still allow access to

it. It is desirable therefore, for each user to maintain individual

control over his designs.

The solution dictated by both memory constraints and access

considerations is to have the TIL database, both data and index files,

reside in internal memory, on the C drive, while the circuit database,

* again both data and index files, be maintained on oiie or more floppy

4-4

diskettes. One drawback to this solution, however, is that it

effectively limits the size of circuits that can be designed on the

system to one that will fit on a floppy diskette.

The TILS and PINS files, populated with the same 34 TrLs used in

the original system, are present on the C drive at startup. The DBMS

expects the circuit files to be present on the A drive before any

operations will occur. If no circuit files exist, another database

utility program, Makedb, must be run to create the empty files on the

floppy diskette. A user's guide describing the operation of all of the

database utility programs is included as an appendix to this thesis

effort.

Summary

Using the data and index file structures discussed in this

chapter, the TTL database, populated with the same 34 TILs present in

the original system, occupies 23,714 characters or bytes of internal

memory. The overhead required to maintain the circuit database on the

floppy starts at 3132 bytes empty, and continues to grow as more

records are added. The size of circuit that can be inserted or "saved"

using this DBMS is limited by the amount of memory on the floppy

diskette. And, while the effectiveness of the DBMS is unaffected, its

efficiency is hampered by the access mechanism being used.

4-5

0. - . ,,..,,,. ,. m m nnn mnn

V. Implementation

General Description

Figure 5 - 1 illustrates the overall implementation of the new

central database and its associated DBMS and utility programs.

TTL
• Index

Dtabase

CdataD

Addtt [ICircuit

Database

Utilty *(A drive)

Data

Manipulation

Language

Makedb

Utility

Digital Circuit

Design Environment

Fig. 5 - 1. Overall Implementation of the New DBMS

On the right-hand side of the figure, the TTL and circuit portions of

the database are shown to be stored in physically separate locations.

The data contained in both portions of the database is accessed

directly, on a record-by-record basis, by the Cdata functions. The

Cdata functions, in turn, are invoked by the Data Manipulation Language

(DML) module. The DML module in this figure consists of the executable

5-1

functions invoked by the DML commands described in Chapter III. It is

the DML module that allows the digital circuit design environment to

think that it is dealing with an undivided database of TTLs and

circuits instead of collections of records in physically separate

locations. The functions in the DML module invoke Cdata functions to

accomplish their work. Appendix B contains a short description of each

of the Cdata functions invoked directly by functions in the DML module.

On the left-hand side of the figure are the database utility programs,

executed from outside the design environment. Both the Index and

Addttl utilities access the databases through Cdata functions. The

Makedb utility does not require any access to the data.

The remainder of this chapter is a more detailed look at the DML

module functions or DBMS operations, and the database utility programs.

DBMS Operations

Insert. The DBMS insert operation refers only to the insertion of

circuit designs into the database. TTLS are inserted only by using the

Addttl utility. Figure 5 - 2 illustrates the general flow of the

insert operation. Insert begins by opening the CKTS relation. Once

open, the CKTS relation is checked to see if there is a match to the

circuit identifier passed as input. A match indicates that the

circuit design had been previously saved and was modified during the

current design session. If a match is found, the CKTS relation is

closed and the delete operation is invoked to clear the database of the

old version of the design. When the delete operation is completed, the

CKTS relation is reopened. If the circuit does not already exist in

5-2

0laIiii l Iimmmnm

Enter

CRTS

N

add-red - -) CKT

D ~~~ ~ n ICN td ,LOt

records y

D urN

D~~~~~~~~ Fi.5- .Iplmnato h rnert Operatio

.MT
an .R

-- - -- I I i ma minm mlmiicord y

the database, the CKTS relation would remain open. From this point on

processing is the same for both cases.

Insertion of circuit data begins with an entry into the CKTS

relation. Data required for the CKTS relation must be provided, in the

format of that relation, at the address given as an input parameter.

This data must be reinserted each time a circuit is saved even if none

of the values have changed. The values are transferred directly from

the using program's area into the CKTS file. The CKTS relation is then

closed.

Insertions into the ICONS relation begin by opening the ICONS

relation along with TEMP.LOC and TEMP.ICN. These two TEMP files are

the minimum required input data. If either of the files is not

present, the CKTS record already entered is removed and the operation

terminated. Assuming they are present, values are read from the two

TEMP files into a holding structure in the database area. Before

writing the new record to the ICON file, a check is made to ensure that

the records being read from the two TEMP files are Joined correctly.

This, and all other instances of "proper join" checking mentioned in

this section are included only to safeguard the integrity of the

database, the graphic interface program creates and manipulates the

TEMP files in such a way that the records should always be in the same

order. When end of file is reached, the ICONS relation and the TEMP

files involved are closed.

In the same manner, if both TEMP.GRF and TEMP.CKT are present,

insertions are made into the LINKS relation by combining values read

from those files.

5-4

If TEMP.IOT is present, it along with the IOUT relation are then

opened. If the first thing read from TEMP.IOT is "No output from ICE",

nothing will be written to the database. Otherwise, values are read

from TEMP.IOT and transferred to the holding area. The values for the

ERRCODE field are determined by the insertion procedure. The first

character of the PROB DESC field is forced to "A" or "Z" depending on

this ERRCODE, to ensure that all "questionable link" errors will

appear before "missing link" errors during subsequent retrievals.

Records are written to the IOUT file as they are completed. When end

of file is reached, the IOUT relation and the TEMP.IOT file are closed.

Next, insertion into the LIN relation begins. If the TEMP.IN file

exists, it is opened along with the LIN relation. Data is read in to

the holding area and written out as each record fills. When the end of

file is reached, the LIN relation and the TEMP.IN file are closed.

If TEMP.OUT exists, it is opened and the first few lines are

checked. If the file contains the statement "No output", TEMP.OUT is

closed and a check is made for TEMP.DIS. If TEMP.OUT does contain

data, it is assumed that TEMP.DIS is also present, as there must be

monitoring points specified before output signals will be recorded. If

either TEMP.DIS or TEMP.OUT contain data, the LOUT relation is opened.

Values are read from the open TEMP files into the holding area. If

only TEMP.DIS is present, a flag will be placed in the OUTPUT field to

indicate "No output." If both TEMP files contain data, a "proper join"

check is made before writing the new record to the LOUT file. Records

are written to the LOUT relation as they are formed. When the end of

file is reached, all open files and relations are closed.

5-5

0mmn nr

At this point the insert operation returns control to the using

program with an indication of successful completion. It is left to the

using program to dispose of the TEMP files.

Error Handling. Errors that may occur during the insertion

of a circuit design are: corrupted index, inability to open database

files, invalid data received either in the form of missing files or

improper joins, and finally, insufficient space. Each of these errors

causes the operation to terminate and return a specific error code to

the using program. In the case of an "insufficient space" error, all

of the insertions made to that point are undone by calling the deletion

procedure before returning to the using program.

Recovery Considerations. If a power failure should occur

during the insertion procedure, only that part of the circuit

successfully inserted prior to the failure would be saved. By

inserting into the database relations in the proper order, that being

CKTS, ICONS, LINKS, IOUT, LIN, and LOUT, the integrity of the database

is nonetheless ensured no matter where it may be interrupted. Nothing

will exist without a circuit to relate it to, no links will be between

icons that don't exist, and no LOGSIM output will be present without

the input it is based on. In no case would data exist that the

designer was not aware of. For example, even if only the CKTS record

was inserted the circuit would still appear in the circuit directory

even though the design would not be available.

To recover, the designer would have to run the index utility and

then, reentering the design environment, begin again by retrieving a

backup copy of the circuit. Because the first thing the insert

5-6

operation does is delete all traces of a circuit design with the same

identifier, that backup must either have been stored on the same floppy

with a different circuit identifier or on a separate floppy.

Flexibility vs Ease of Use. A drawback to this

implementation of the insert operation is that it is highly dependent

on the structure of the TEMP files. A more flexible alternative,

considered early on, would have placed the burden of converting TEMP

file format into database format on the program responsible for the

TEMP files. The insert command would simply place the data supplied

into the relation specified. While flexible, this would require the

using program to have extremely detailed knowledge of the database

structure when it should only be concerned with inserting a circuit.

The implementation described in this section was decided upon because,

although not as flexible, it frees the using program from unnecessary

detail and shifts the burden of maintaining database integrity back to

the database management system where it belongs.

Delete. The DBMS delete operation, like the insert operation,

refers only to the deletion of circuit designs from the database. The

TTL database is modified only by using the Addttl utility program.

Figure 5 - 3 illustrates the general flow of the delete operation.

Delete begins by opening all of the database files pertaining to

circuit data. It is assumed that the using program would not be

asking for the deletion of a non-existent circuit, and therefore no

preliminary check of the CKTS relation is done to confirm its

existence. Sequential searches are made through LOUT, LIN, IOUT,

LINKS, and ICONS in that order. To make the search as efficient as

5 - 7

• i i | 5-7

Enter

next-rec from LWJ
el1red -) LOUT

FL*

OF or FLA6 and ND ID-44atch

,wxt-rec frw LIN
delre -) LIN

ID-*atc ID No Dtfttc

-5-8

possible, a flag is set to indicate when a match is found in each

relation. Once the flag is set, the search can be discontinued as soon

as the next non-matching record is found because all records pertaining

to the same circuit would be located together by key value. Once the

sequential searches are finished, the CKTS relation is checked. When

this last record has been deleted, the database files are closed.

At this point the delete operation returns control to the using

program with an indication of successful completion.

Error Handling. The only errors possible are corrupted

indexes or the inability to open the database files. Should either

occur, the operation would terminate and a specific error code would be

returned to the using program.

Recovery Considerations. Records are deleted from the

database in the opposite order of their insertion. This, as was

discussed in the previous section, will ensure the integrity of the

database. If a failure should occur in the middle of a deletion, a

circuit would still be listed i, the circuit directory until the last

record pertaining to it was gone.

Retrieve. The DBMS retrieve operation, called query, is

* applicable to both circuit and TTL data. Figure 5 - 4 illustrates the

general flow of the retrieve operation or query.

Ouery begins by opening all of the database files contained in the

list pointed to by the "from" parameter. The standard DBMS output

file, "Dbreply", is prepared to accept the output by opening it in the

write mode. This automatically erases the previous contents. A check

is then made to see if the requirement is for a directory. A directory

5-9

0 mi. l iiIilllI l

100

request is signaled by a "*" in the first element in the "where" list

and causes one record to be output for each entry in the single

relation specified. The implementation does not recognize joins in

this case. While requests for only TTL and circuit directories are

expected, it works equally well on all relations.

If the request involves a single relation but is not a directory

request, a check is made to see if the relation involved is either TTLS

or CKTS. If that is true, or if the "where" clause contains the second

value needed to complete the concatenated key of all but the LOUT

relation, direct access of a single record is carried out. Otherwise,

the operation performs a sequential search the specified relation,

checking the first field against the circuit or TTL identifier supplied

in the "where" list. If a match is found the selected data elements

are transferred to an output buffer.

If a request involves two relations, the second relation must be

ICONS. If the first relation specified is LINKS, a special routine to

retrieve TEMP.CKT data is triggered. Exactly why a special routine is

required is discussed in the "problem area" section that follows. What

the special routine involves is described here. A sequential search

* through the LINKS relation is made, checking for the circuit identifier

specified in the "where" clause. If a match is found, all of the

fields required, with the exception of the TITLE fields in the second

and seventh positions, are transierred to the output buffer. The first

title is found by concatenating the first and third fields of the LINKS

relation to form the unique key necessary to directly access the first

ICONS record. The third field of the first ICONS record is transferred

5 - 11

to the second field of the output buffer. The second title is found by

concatenating the first and thirtieth fields of the LINKS relation to

form the unique key necessary to directly access the second ICONS

record. The third field of the second ICONS record is transferred to

the seventh field of the output buffer. Please note this special

routine is highly dependent on the format of LINKS, ICONS, and TEMP.CKT

and must be modified if any of them change.

If it is a two relation join but the first relation specified is

not LINKS, a sequential search will be made through the first relation

checking for a match with the circuit identifier specified in the

"where" clause. If a match is found, the first and second fields of

that record are concatenated together to form the unique key needed to

directly access the joining ICONS record. The specified fields are

then transferred to the output buffer from the records of both

relations. Note that the only relations this join will work with are

LIN and LOUT, the only ones which have the ICON field in the second

position of the relation.

No matter what type of retrieval request was made, the last step

of the operation, before returning control to the using program, is to

close the database files and "db rely." At this point the retrieve

operation returns control to the using program with an indication of

successful completion.

Error Handling. Errors that could occur during the course

of the retrieve operation are: corrupted indexes, the inability to open

the database files, inability to open the output file, and, though not

technically an error, the failure to find the requested data. The

5 - 12

operation will terminate at the point any of these conditions are

detected and the specific error code for the problem will be returned.

Recovery Considerations. Because the retrieve operation does

not modify the database, no recovery considerations are necessary. If

a power failure were to occur during a retrieval, the index utility

would have to be run and then, upon reentering the design environment,

the retrieval could simply be reissued.

Problem Area. As mentioned in Chapter III, the retrieval

required to reconstruct TEMP.CKT is the most complex, the only one

requiring the use of tuple variables to distinguish between multiple

data elements with the same name and multiple copies of the same

relation. Cdata, unfortunately, does not support the use of tuple

variables and does not allow duplicate names to be present in either

the "select" or "from" lists. Duplicate names in the "from" list cause

problems because Cdata tries to open the same relation file twice.

This was handled by listing ICONS only once in the "from" list.

Duplicate element names cause problems for Cdata's generic routines for

transferring fields of data. The transfers are made based on the

positions of the data element names in the "select" list, and are

confused by duplicate field names, so the only solution was to create a

special routine that bypassed Cdata's generic routines and move the

data "by hand" in this one case. Admittedly, this is not an ideal

situation, but if the format of the TEMP files remains stable, it

should not cause any problems.

Associated Format Conversion Routines. The requirement of

this DBMS, to support the system as it originally existed, means

5 - 13

reconstructing the TEMP files it is used to working with. While the

retrieve operation alone is capable of supplying all of the data, it is

not in the business of formatting and punctuating. Every TEMP file,

with the exception of TEMP.LOC, contains some "non-data" characters,

* usually for purposes of improving the display. To support the system

as it existed, a set of conversion routines were written to format the

data supplied by the retrieve operation in "db reply" back into TEMP

files. While these are not technically part of the data manipulation

language, they can be found, along with the code implementing the

insert, delete, and retrieve operations, in the source code file

"dml. c."

Utility Programs

The database utility programs, Index, Addttl, and Makedb, are not

part of the DML used by the circuit design environment and are executed

only when outside the environment. A user's manual covering all three

* programs can be found in Appendix A.

Index. The Index utility is a modified version of Index function

provided by Cdata (12:214). It is modified only to the extent that it

will index circuit data on the floppy drive and TTL data on the

internal drive. The Index utility is necessary for those times when

power is interrupted during a database manipulation. Any database

files open at the time of a power failure will be "locked" until they

are rebuilt using this utility.

Addttl. Addttl is a modified version of QD, the Data Entry and

Query program provided as part of the Cdata toolset (12:200). It is

5 - 14

0

modified to the extent that is allows access only to the TTLS and PINS

relations. It is intended only for the purpose of adding TTLs to the

database, but it is recognized that when people input data, there is

always the possibility of errors. For this reason, the ability to

modify and delete are also included. This program relies on the user

to maintain the accuracy and integrity of the database and should

therefore be used only by a responsible individual who can then copy

the updated files (TTLS.DAT, TTLS.X01, PINS.DAT, PINS.X01) to the

student design stations. This program should not be left on student

machines.

The program allows the insertion of all the information needed to

describe a new TTL with the exception of its executable function.

This means that circuits can be designed using the new TTL and the

design can be checked by the InterConnect Expert, but it cannot be

simulated by LOGSIM. Suggestions for how this capability might be

added are discussed in Chapter vIH.

Hakedb. Makedb is a batch file that copies the empty data files

(CKTS.DAT, ICONS.DAT, LINKS.DAT, IOUT.DAT, LOUT.DAT, LIN.DAT) and their

associated index files (CKTS.XO1, ICONS.X01, LINKS.X01, IOUT.X01,

LOUT.X01, LIN.X01) from internal memory, where they were created on

system startup, to the floppy diskette residing on the A drive. It is

included for the purpose of preparing an empty floppy disk to accept

circuit design information. If any of the circuit database files

existed on the floppy prior to running this batch file, the information

contained in them will be wiped out.

5 - 15

Summary

The chapter reviewed in detail the implementation of each DBMS

operation and utility program. The implementation of the insert

operation traded flexibility for ease-of-use and is highly sensitive to

changes in the format of the TEMP files or the database relations.

Another area of format sensitivity is in the retrieve operation where

the lack of support for tuple variables required one retrieval to be

"hard-coded".

The majority of the development work was done using a C-86 compiler

before finally changing over to Microsoft C. In converting, it was

discovered that the two compilers are not completely compatible in the

way they read and write to files. The source code has been tailored to

work with the Microsoft compiler.

5 - 16

VI. Testing and Results

Testing

The tests used to evaluate the centralized CAD database

management system (DBMS) fall into two categories, those intended to

test functional capability, and those intended to measure its

efficiency. A brief description of each of the specific tests

conducted can be found in the following sections.

Functionality Tests. A separate test set was designed for each

design function involving the database. Descriptions of those test

sets follow.

Inserting Circuit Data. The test set for this function

consisted of saving circuits designs in all stages of development and

testing. They included: designs that contained only icons, complete

designs containing icons and links, designs with and without design

errors, with and without LOGSIM inputs, designs that had been analyzed

by ICE, and/or simulated by LOGSIH, or neither. It included designs

that had been previously saved and modified, and new, previously

unsaved, designs. The test set also included attempting to save to a

non-existent floppy, a floppy with insufficient space, a floppy with

missing database files, and interrupting the power in the middle of the

"Save" procedure.

Deleting Circuit Data. The test set for this function

consisted of deleting all the different types of circuit designs that

had been used to test the "Save" capability and included interrupting

the power in the middle of the "Delete" procedure.

6-1

. 0. m u m

Retrieving Circuit Data. The test set for this function

consisted of retrieving all the different types of circuit designs that

had been used to test the "Save" capability. It also included

attempting to retrieve a design that did not exit and attempting to

retrieve when there was no floppy diskette in the A drive or when the

floppy present did not contain one or more of the database files.

Retrieving TTL Data. The test set for this function

consisted of retrieving information for a directory of all TTLs in the

database, and retrieving information about an individual chip.

Modifying the TTL Database. The test set for this function

consisted of using the Addttl utility program to enter data for a new

TTL, modify that data, and then delete it, repeating the "Retrieving

TTL Data" test set after each change to confirm the presence of the new

information.

Preparing Diskettes for Database Use. The test for this

function consisted of using the Makedb batch file to prepare a floppy

diskette for database use. It included: attempting to prepare a non-

existent diskette, an unformatted diskette, one with insufficient space

for even empty database files, one that already contained database

files, and one that did not.

Efficiency Tests. The tests used to determine the efficiency of

the DBMS again fell into two categories: space requirements and

response times. Descriptions of the specific tests conducted in each

category follow.

Space Requirements. The amount of space occupied by the

various components of the database and DBMS was analyzed from the

6-2

standpoint of location, looking first at the internal memory required

and then at the external.

Internal Memory. The DBMS components taking up internal

memory are: the DBMS object modules, the TTL database, and the utility

programs. While the DBMS object modules will not necessarily be

maintained in internal memory once they have been linked with the

circuit design environment, they are the only objective measure of DBMS

size. Obtaining the percentage of executable code size directly

attributable to the DBMS would be difficult because any changes made to

the circuit design environment to interface it with the new database

would also have some effect on its executable size.

External Memory. External memory is occupied by circuit

data files and their associated index files. A comparison was made of

the amount of memory required to store varying numbers of a single

circuit design using the original system and the new central database.

For the original system, this was the sum of the space occupied by each

file of each circuit design. For the central database system, this was

the sum of the space occupied by the circuit database files (CKTS.DAT,

ICONS.DAT, LINKS.DAT, LIN.DAT, LOUT.DAT, IOUT.DAT) and their

respective index files. The comparison began with empty databases and

continually accumulated data.

Response Times. The response time of each DBMS operation was

measured as the time spent executing the applicable procedure, from the

call to the return.

Inserting a Circuit. The test set consisted of circuit

designs in varying sizes, as measured by the total nul.iber of database

6-3

records they generate. Each circuit was stored first to an empty

database and then again to a partially loaded database.

Deleting a Circuit. The test set consisted of selected

CKT identifiers, such that the search time for the particular circuit's

records would vary from first found, to last found and therefore

requiring a search through the length of each relation. Circuit size

remained constant throughout the test. The test was run twice, first

with the database half full, and then again with it completely full.

Retrieving a Circuit. The test set and procedure in

this case is the same as that described for "Deleting a circuit." Only

the operation being performed was changed.

Retrieving a Single TTL Record. The test set consisted

of selected TTL identifiers, such that the identifiers ranged from the

highest to the lowest value stored. Each TTL was retrieved from the

same database of 34 TTLs.

Retrieving a Single Pin Record. The test set consisted

of the first pin of each of TTL identifiers used in "Retrieving a

Single TTL Record." Each pin record was retrieved from the same

database of 34 TTLs.

Retrieving TTL Directory Information. The test

consisted of a single request for a directory TTLs. The number of TTLs

in the database for the test was 34.

Modifying the TTL Database. This was not measured

because the speed of the Addttl utility program is operator dependent.

Preparing Floppy for Database Use. The test set was a

single run of the Makedb utility program.

6 -4

S

Results

Functionality. The TEMP files used for processing by the graphics

interface program were able to be stored in the database, retrieved,

reformatted, and used again just as if they were original TEMP files.

Only in the cases where TEMP.OUT and TEMP.IOT originally contained

notifications of "No output" are those TEMP files not reconstructed

upon retrieval. It would appear to the design environment as if LOGSIM

and ICE had never been run against the circuit being retrieved. The

format of the files returned by the central database vary from those

originally stored in one minor way, the order of the records within the

files is changed because the database returns records in ascending

order of their key values. This variation has not been found to have

any effect on the functionality of the circuit design environment.

Efficiency.

Space Requirements.

Internal. The DBMS object modules, "ts.lib", "dml.obj",

and "dbdefine.obj", take up a total of 48 Kbytes of memory. Keep in

mind, however, this amount does not translate directly into the space

required for the executable code. The TTL data and index files,

loaded with 34 TTLs, take up 24 KBytes of memory. The empty circuit

data and index files maintained in internal memory for use by the

Makedb utility program take up 3 KBytes. And, finally, the utility

programs themselves, Index.exe, Addttl.exe, and Makedb.bat, together

occupy 51 KBytes. Internal memory requirements then total 126 KBytes.

External. Figure 6 - 1 compares the amount of memory

used to store designs on both the original and the new system.

6-5

(x 194)

35 lational Database . •
-- Flat File Database1

" 9 - F .a F .l a se. :- '

2 5i

• sii:i i

5

* 21

01 26 36 46 510 66 76 8

.' r of Circuits

Fig. 6 - 1. Comparison of Circuit Design Memory Requirements

The central database system is at a slight disadvantage, for the first

11 circuits, because of the index files it must maintain. Beyond that

point, the central database is able to make much more efficient use of

the space because the data is organized into fever and larger files.

In one directory on the floppy diskette, there are only spaces to

maintain a maximum of 112 files, and with 10 files per circuit for the

original system, 11 circuits fill the directory and prevent any more

from being added, even though a large percentage of the memory space

remains unused.

Response Times. The response times for the insertion,

deletion, and retrieval of circuit designs are shown in Figures 6 - 2,

6 - 3, and 6 - 4, respectively. Please note the time recoided a

retrieval is actually the time required for six retrievals, one for

6-6

. =S.m i t I i l H

Warpty Database
-- alf-Full batabast

5 5

4 9

3 5/..

.

25..4....0

510 15 20 25 39
* Circuit Size in Records

Fig. 6 -2. Response Times of Circuit Insertion

us ~--Full batakase A

1100

19 -,

o A,

o Ae

6 -

1 6 0• . ..
Ia ft-Full Datalse

- -- Full Data"se -

140-

IIl

r

461

F Fjvst Middla Last

Circuit's Relative Position

Fig. 6 -4. Response Times of Circuit Retrieval

each circuit relation, and six conversions to TEMP file format. For

all three of three operations, a more crowded database resulted in a

longer response time. For deletion and retrieval, the average time

should be slower when the database is larger because of the sequential

searches being done. The slower response times for insertions into a

crowded database may be due to the more complex index structure that

0 must be manipulated. Also note that variations in the time versus size

ratio for insertions may be due to individual characteristics of the

different designs stored, for example it would take less time to store

ten records from one file than it would tc store one record from each

of ten files. Finally, keep in mrind the circuit database is maintained

on the floppy drive which is inherently slower than internal memory.

The slow accesses, though, occur only at the beginning or end of the

6 -8

S

design session, when a circuit design is saved, deleted, or retrieved.

The circuit database is never accessed during the design process

itself.

The TTL database is what would be accessed during the design

process and it has the advantage of being stored on the faster

internal hard disk. A directory of the 34 TTL values, for example,

takes only two seconds to produce.

Another advantage the TTL retrievals have over circuit retrievals

is that TTL retrievals are generally for a single TTLS or PINS record.

Because the retrievals are for a specific record, that record can be

accessed directly by its key value and not have to resort to the

sequential searches used in most circuit retrievals. The response time

for a specific record retrieval would not vary by the relative position

of the identifier in the database. All of the retrievals done for this

test took approximately the same amount of time to complete, that time

being under one second.

The final response time measured, the time it takes to prepare a0
floppy with empty database files, was found to be 17 seconds.

Summary

The database and DBMS developed for this effort were able to

support all of the functions required of them by the digital circuit

design envir)nment. Only the TEMP files containing a "No Output"

indication were not saved and returned when a circuit design was

retrieved. The response times for circuit design manipulations, to and

from the floppy drive, can be fairly long but they occur only at the

6-9

0' ' 1 I I

beginning and end of a design session and not during the design process

itself. The speed of hard disk storage was traded for the data

security of the floppy drive. The response times for TTL retrievals is

quite good. As for memory utilization, while the new circuit database

starts off at a sligit disadvantage because of index overhead, it is

able to use all the memory of a floppy disk and generally store more

circuit designs than the original system because the data is stored in

fewer, larger files. The original, up to ten files per design, method

tends to use up the available directory slots before it uses up the

memory.

6

6 - 10

S

VII. Conclusion and Recommendations

Conclusion

The aim of this thesis effort was twofold. The primary goal was

to design and develop a centralized database and a custom tailored CAD

Database Management System (DBMS) to work with AFIT's existing digital

circuit design environment on a Zenith Z-248 workstation. The

secondary goal was to develop a utility program that would allow new

TTLs to be easily inserted into this new database. The goals were

intended to solve certain problems caused by the data storage practices

of the original system. One of those problems was the flat file method

for storing circuit design information. It was adequate but resulted

in duplication of data and an inability to obtain a listing of

available designs. TTL information was another problem. The Iiginal

system maintained portions of the TTL database in each of the three

programs thac make up the design environment, again resulting in

duplication of data and making it very difficult to add new TTLs.

The goals stated above were met. A database, DBMS, and utility

program were developed for this thesis effort and evaluated using the

test sets described in Chapter VI. They were found to support all of

the functions of the original design environment, and correct those

problems just discussed, with one exception. As it stands, new TTLs

added to the database are only for use by the ICE and graphics

interface programs. Until the utility program is expanded to input the

executable function of a TTL, the new TTLs cannot be simulated by the

LOGSIM program. The DBMS conserves the limited space of the Z-248, and

encourages data security by storing all circuit design data to the

7 - I

designer's own floppy diskette. It significantly increases the number

of small circuit designs that can be stored in a single directory of a

floppy diskette. Of course, the DBMS that provides these advantages

does take up some memory itself, and the increased data manipulation

does take up some time, but the advantage of a more flexible and

efficient digital circuit design environment is worth the cost.

The approach used in reaching the goals of this effort included

researching existing methods of CAD data management, researching the

data and data manipulation requirements of the existing environment,

and then designing and implementing a DBMS to meet those specific

requirements. The basic relational database routines used in the

implementation were obtained from C Database Development by Al Stevens

(12).

Recommendations

The database, DBMS, and utility programs designed and implemented

for this thesis accomplished the goals set for them, but the

possibility for improvement exists in nearly all things and this is no

exception. The following areas are recommended for future studies:

First, design and implement a more efficient means of accessing

the data. The access method provided in C Database Development is a

balanced tree (B-tree) index to each unique key value, or each

individual record. This works fine in those cases where directories,

or all records in a relation, are requested or when a single specific

record is requested, but in the vast majority of cases in this

application, the search is not for one or all, but for a group of

7-2

0

records associated with a specific TTL or circuit. The new index

should be a B-tree of nodes for each TTL or circuit identifier. Each

node would then point to list of records for that identifier, as well

as to the next and previous nodes. There would be no need to maintain

the records in each list in any particular order.

Second, modify the graphics interface program to display and work

with the six character TTL identifier allowed by the database. This

would allow the five digit TTL number to be followed by either a blank

or a specific package designator (i.e., J or N).

Third, modify the graphics interface program to calculate the

"bounding box" or the maximum X and Y coordinates occupied by a design

at the time it is saved. This information would be stored in fields

already defined in the CKTS relation and could be used to determine if

a whole circuit design would fit if pulled into another design at any

given location. To use a circuit design as a component in another

circuit would require additional coding changes in the graphics

interface program to perform the following functions: chanve the ICON

identifiers in the component circuit into identifiers that do not

conflict with .he identifiers already in use in the other circuit,

offset all coordinates in the component circuit by the new position of

its bottom left corner, allow for the possibility of having more tha.

one of each of the power, clock, or ground icons in a single design,

and finally, define a new icon of type OUTPUT PORT and manipulate It

aicording to Capt Adams' recommendation. (1:7-4,5) Note that defining

a new type of icon would require some minor changes be made to the DBMS

code also.

7-3

Fourth, modify the LOGSIM program to make use of the central

database. Primarily, this would involve separating the executable

functions of each TTL from the main body of LOGSIM code so that all of

LOGSIM would not have to be recompiled each time a new TTL is added.

The method Batory suggested for maintaining executable functions in a

database was to compile the TTL functions into a single module to be

indexed into by the TTL identifier (3). It is my feeling that

maintaining each TTL's function in its own module, <TTL-

identifier>.EXE, would be even more convenient.

Fifth, expand the database utility program to allow easy input of

the executaluh function of new TTLs. As it stands now, while they can

be used in designs and analyzed by ICE, no TTLs added by means of the

database utility program can be simulated by LOGSIM. Ideally, a

designer should be able to extract information directly from a TTL

description/characteristics book, enter it and compile It via the

utility program, and have it produce as its result the individual

executable module described in the immediately preceding

recommendation.

Sixth, modify the graphics interface program to prompt the

designer for which pieces of information he would like to have saved

(i.e., design only, design and LOGSIM inputs, design and ICE results,

or ALL) instead of automatically saving all. Currently, once a design

has been analyzed, simulated, or had inputs or monitoring points

designated, the resultant TEMP files will remain with the design

forever. This modification would save some space and time in storing

and retrieving unnecessary information.

7-4

0l

Seventh, modify the graphics interface program to allow designers

to view the pin assignment information for any TTL currently in the

database. This would eliminate the need for keeping a TTL IC

description/characteristic book handy.

Eighth, modify the Cdata "dbopen" and "index" functions to

provide automatic reindexing of all files found to be corrupted. The

circuit designer should not have to be bothered with database problems.

Finally, modify the basic database routines to allow the use of

tuple variables. Because these routines currently do not recognize

tuple variables, they will not allow multiple copies of the same

relation to be specified in the "from" list or two or more data

elements with the same name to be specified in the "select" list. The

lack of this capability forced the undesirable situation of creating

code for a specific query in one case.

7-5

0!.. ... = = '==,•, =m mmnlmmm

Appendix A:

User's Manual for the Database Utility Programs

Written by: Capt Sue A. Ehrhart

Date: November 1988

A0|

0

A-i1

0. . - - - - .,m nmm m m n mm

Table of Contents

Page

Introduction A - 3

I. Makedb Utility A - 4

Use... A- 4
Error Conditions A - 5

II. Addttl Utility A - 6

TTLS Data A- 6
Add......... A - 7
Modify A- 8
Delete A- 9
View. A- 1

PINS Data A - 11
Add......... A- 11
Modify A - 13
Delete A - 15
View A-16

Error Conditions A - 16

III. Index Utility. A - 18

Indexttl. A - 19
Indexckt. A -19
Error Conditions A - 20

A - 2

Introduction

General. This manual describes the basic procedures required to setup

the AFIT digital circuit design environment database and operate its

associated utility programs, Makedb, Addttl, and Index.

System Requirements. The database and utility programs require a

Zenith Z-248 workstation (or compatable) with the MS-DOS operating

system. Because the TTL database is maintained on the internal C

drive, a hard drive is required. To compile the system using

Startup.bat, a Microsoft C compiler is required.

Software Installation. All database source files, "*.c", must be

loaded into the same directory on the hard drive along with the batch

files, Startup.bat and Makedb.bat, and data files, ttl.dat, ttl.des,

and pinfile. The Startup batch file expects the Microsoft compiler to

be located in the c:\ms-c directory with compiler commands in

\ms-c\bin, compiler include files in \ms-c\lnclude, and an empty work

directory called \ms-c\test. With the files in place, the database can

be Initialized by executing the Startup batch file. When the batch

file completes processing, the database will be loaded with an initial

set of 34 TTLs and be ready to go.

NOTE

Throughout this manual, the symbols <CR>,<ESC>,<HOME>,<END>,<?age
Up>, and <Page Down> indicate to keys to be pressed, not text to be

* typed in. <CR> is normally marked on the keyboard as Return or
Enter, <ESC> is normally marked Esc, <HOME> is 7 on the number pad,
<END> is 1, <Page Up> is 9, and <Page Down> is 3. The "arrow keys"
are 2,4,6,and 8 on the number keypad.

A-3

0 ,i

Hakedb Utility

The Makedb utility is a batch file that copies empty circuit

database files from the C drive to the A drive to prepare floppy

diskettes for circuit design storage.

CAUTION

If any of the circuit database files exist on the floppy before
running this utility they will be overwritten, and any data they
contained will be lost. The circuit database files are listed in
Figure A - 1.

Use. In the directory containing the Makedb.bat file, place a

formatted floppy diskette in the A drive, and enter:

Makedb <CR>

The batch file will print the following message on the screen as it

copies files to the A drive:

rem Preparing floppy in drive A with empty database files

ECHO OFF

The system prompt will return when the operation is complete. A

directory of the floppy in drive A should contain all of the files

listed in Figure A - 1. Any other files that were on the floppy to

start with will also be present.

A-4

0 i l I H

CKTS DA71 I 12-02-68 12 53p
CKTS Xo2i -C2-88 2:153p

ICONS DA' I C) 12-U-&8 125 p
ICONS Xol 51 1- 1-k) :
LI NKS DAI I 12-0-8 & 12 53 ,
LINKS XC)S1 512 1-02-8 12:5 3

LIN DAT 1 0 12-02-66 12: 53P
L IN X,-1 51 12-02-88 12:5 3 P
LOUT DA- 1u 12- 2- i :' 5: 3 :P
LOU Xt0I 512 1--02-82 8 12:53P
I tL.'r DiYF 1K 1-C2-8 125: p
I OLl XC)1 51a 1-02-58 IS: 5 3p

Fig. A - 1. Directory of Circuit Database Files

Error Conditions

1. Door Open.

Indication: Receipt of operating system error message

Error reading drive A
abort,retry or ignore?

Correction: Close the door of the drive and enter "r" for retry.

2. Diskette Not Formatted.

Indication: Receipt of operating system error message

General Failure error reading drive A
abort,retry, or ignore?

Correction: Format the diskette in accordance vith MS-DOS operating
0 instructions and reexecute the Makedb utility.

3. Insufficient Space.

Indication: Receipt of operating system error message

Insufficient Space
0 file(s) copied.

Correction: There was not enough room to store even empty files on the
diskette in drive A. Delete some non-database files to make room, or
better yet, select another diskette for use. Then reexecute the Makedb
utility.

A -5

0

Addttl Utility

The Addttl utility is an executable program intended for placing

additional TTLs into the design database. Because of the possibility

of errors, however, the capability to modify, delete, and view the data

have also been included. To enter data for one or more TTLs, the

Addttl utility must be executed twice, the first time to fill in the

data required by the TTLS relation, and then again to fill in the data

required by the PINS relation. This utility is currently limited in

that it cannot be used to input the executable function of any new TTL.

CAUTION

The operator of this utility is responsible for maintaining the
accuracy and integrity of the TTL database. A data manager should
make all modifications to the database and then copy TTL.DAT,
TTL.XO1, PINS.DAT, and PINS.XO1 from his machine to the design
workstations. This utility should not be left on student
workstations.

NOTE

When entering data on the screen, the cursor will move to the next
field automatically when the current field is full or when a <CR>
is entered. The <CR> can be entered at any time. There is no need
to blank fill any unused space in any data fields.

TTLS Data. While in the directory containing the "Addttl.exe"

file, enter:

Addttl ttls <CR>

The screen will be displayed as shown in Figure A - 2. The cursor will

automatically be positioned at the beginning of the TTL field.

A - 6

-- TTLS --

* I'TTL
NO OF PINS
TTL DESC
FANOUT

Fig. A - 2. TTLS Relation Template

Add. Use the steps listed in this section to add a new TTL

to the database.

Step 1: Enter the identifier of the TTI. being added. The format of

the identifier should be left justified, digits only, with no leading

zeros. While the database allows up to 6 alphanumeric characters, the

design environment currently expects only 4 or 5 digit identifiers.

Use the backspace key and make any corrections necessary before

pressing <CR> to advance the cursor to the NO OF PINS field. Once <CR>

has been pressed, the notice "New record" should appear in the bottom

left corner of the screen. If that doesn't occur and, instead,

information automatically appears in the remaining fields, the TTL you

are attempting to enter is already In the database. Press <ESC> to

clear the template and start over. Press <ESC> a second time to end

the program.

A

A - 7

Step 2: Enter the two digit number corresponding to the number of pins

for the TTL just entered. The cursor will automatically advance to the

TTL DESC field.

Step 3: Enter the description of the TTL function. As a reminder to

subsequent users that there is no executable function for this TTL, be

sure to include the phrase "NO SIMULATION". Enter <CR>, if necessary,

to advance to the FANOUT field.

Step 4: Enter the two digit fanout associated with the TTL being

entered. This value is generally 10.

Step 5: If there is an error in the TTL identifier field that was not

caught during Step 1, press <ESC> to clear the template a,d start over.

If there are errors in any fields other than TTL identifier, use the

arrow keys to position the cursor and make corrections.

Step 6: When the data is correct, enter <Fl> to store the record in

the database. The message "New record added" will appear at the bottom

left corner of the screen. Press <ESC> once to clear the template and

begin another operation on the TTLS data. Press twice to end the

program. Remember to now add the pin data for all the new TTLs.

Modify. If a TTLS record has already been stored in the

database before errors have been etected, it is still possible to

correct them. If the error is in the TTL identifier field, the record

A-8

0

will have to be deleted and then re-added. See the instructions for

those sections. If the errors are in any other fields, use the

instructions in this section.

Step 1: Enter the TTL identifier just as it was originally entered.

If you are not sure of the identifier, see the instructions for "View"

in this section. Once <CR> has been pressed, the data previously

entered should appear in the remaining fields. If they do not and,

instead, the message "New record" appears in the bottom left corner of

the screen, you have not entered the TTL identifier correctly. Press

<ESC> to clear the template and then try again.

Step 2: Use the arrow keys to position the cursor to make the

necessary corrections.

Step 3: When the data is correct, enter <Fl> to store the changed

record back in the database. The message "Returning record" will

appear a' the bottom left corner of the screen. Press <ESC> once to

clear the template and begin another operation on the TTLS data. Press

<ESC> a second time to end the program.

Delete. If there was an error in the TTL identifier field,

or some other reason to want the TTL out of the database, follow the

steps in this section. To preserve database integrity, all pin data of

the ttls concerned should be removed first.

A- 9

0... ~nn mlmmml mlmmml

Step 1: Enter the TTL identifier just as it was originally entered.

Tf you are not sure of the identifier, see the instructions for "View"

in this section. Once <CR> has been pressed, the data previously

entered should appear in the remaining fields. If they do not and,

instead, the message "New record" appears in the bottom left corner of

the screen, you have not entered the TTL identifier correctly. Press

<ESC> to clear the template and then try again.

Step 2: Once the correct record is displayed on the screen, press <F7>

to delete. The message "Verify w/F7" will appear at the bottom left

corner of the screen.

Step 3: If you wish to carry out the deletion, press <F7> to confirm

and the data will disappear from the screen. Any key other than <F7>

will abort the delete request.

Step 4: If the template is not already clear, press <ESC> once to

clear it and begin another operation on the TTLS data. Press <ESC>

with the template empty to end the program.

View. If you are unsure of the TTL identifier you are

looking for, the records of each TTL in the database can be viewed by

using the following steps.

Step 1: Press <Home> to bring up the first record in the database or

<end> to bring up the last record in the database. Records are stored

A - 10

, 0

in "dictionary" order from smallest to largest, with 44151 coming

before 7420.

Step 2: Press <Page Down> or <Page Up> to view any records in between.

The message "Beginning of file" or "At end of file" will appear at the

bottom left corner of the screen when the extreme values contained in

the database are displayed.

Step 3: Press <ESC> once to clear the template and begin another

operation on the TTLS data. Press <ESC> a second time to end the

program.

PINS Data. While in the directory containing the "Addttl.exe"

file, enter:

Addttl pins <CR>

The screen will be displayed as shown in Figure A - 3. The cursor will

automatically be positioned at the beginning of the TTL field.

Add. Use the steps listed in this section to add the pins of

a new TTL to the database. Please note that the TTLS record MUST be

entered before the PINS records will be accepted into the database.

Step 1: Enter the identifier of the TTL exactly as it was stored in

the TTLS relation. Use the backspace key and make any corrections

necessary before pressing <CR> to advance the cursor to the PIN field.

A - 11

0

-- PINS --

TTL
PIN
GATE
VALUE

Fig. A - 3. PINS Relation Template

Step 2: Using a leading zero if necessary, enter the two digit number

of the pin being added. The cursor will automatically advance to the

GATE field and the notice "New record" should appear in the bottom left

corner of the screen. If that doesn't occur and, instead, information

automatically appears in the remaining fields, the pin you are

attempting to enter is already in the database. Press <ESC> to clear

the template and start over. Press <ESC> a second time to end the

program.

Step 3: Enter the GATE the pin is part of. This field must be left

justified and all capital letters. If the function of the pin is as

CLOCK, POWER, or GROUND input, the GATE field should read "CHIP." If

the pin is not connected, the GATE field should read "NC." Otherwise,

the design environment is expecting a single letter. Enter <CR>, if

necessary, to advance to the VALUE field.

A - 12

0

Step 4: Enter the ALUE, or function, associated with the pin being

entered. Legal values are POWER, CLOCK, GROUND, INPUT, OUTPUT, and NC

for "not connected." This field must be left justified and all capital

letters.

Step 5: If there is an error in either the TTL identifier field or the

PIN field that was not caught during Step 1, press <ESC> to clear the

template and start over. If there are errors in the GATE or VALUE

fields, use the arrow keys to position the cursor and make corrections.

Step 6: When the data is correct, enter <Fl> to store the record in

the database. The message "New record added" should appear at the

bottom left corner of the screen. If, instead, the message says

"Record not found", you tried to enter a pin record for a TTL that is

not in the database. Refer, in that case, to the section on "Error

Conditions." Otherwise, press <ESC> once to clear the template and

begin another operation on the PINS data. Press twice to end the

program.

* Modify. If a PINS record has already been stored in the

database before errors have been detected, it is still possible to

correct them. If the error is in either the TTL identifier field or

the PIN field, the record will have to be deleted and then re-added.

See the instructions for those sections. If the errors are in either

the GATE or VALUE fields, use the instructions in this section.

A - 13

0

Step 1: Enter the TTL identifier just as it was originally entered in

the TTLS relation. If you are not sure of the identifier, see the

instructions for "View" in the TTLS Data section. Press <CR> to

advance the cursor to the PIN field.

Step 2: Enter the two digit PIN number just as it was entered

originally. The cursor will automatically advance to the next field.

Once the cursor advances to the next field, the data previously entered

should appear in the remaining fields. If it does not and, instead,

the message "New record" appears in the bottom left corner of the

* screen, you have not entered the PIN number correctly. If you are not

sure of the PIN number, see the instructions for "View" in this

section. Press <ESC> to clear the template and then try again. When

the data does appear, use the arrow keys to position the cursor to make

the necessary corrections.

Step 3: When the data is correct, enter <Fl> to store the changed

record back in the database. The message "Returning record" will

appear at the bottom left corner of the screen. Press <ESC> once to

clear the template and begin another operation on the PINS data. Press

<ESC> a second time to end the program.

Delete. If there was an error in either the TTL identifier

field or the PIN field, or some other reason to want the PIN record out

of the database, follow the steps in this section.

A - 14

Step 1: Enter the TTL identifier just as it was originally entered in

the TTLS relation. If you are not sure of the identifier, see the

instructions for "View" in the TTLS Data section.

Step 2: Enter the PIN number just as it was entered originally. Press

<CR>, if necessary, to advance the cursor to the next field. Once the

cursor advances to the next field, the data previously entered should

appear in the remaining fields. If it does not and, instead, the

message "New record" appears in the bottom left corner of the screen,

you have not entered the PIN number correctly. If you are not sure of

the PIN number, see the instructions for "View" in this section. Press

<ESC> to clear the template and then try again. When the data does

appear, use the arrow keys to position the cursor to make the necessary

corrections.

Step 3: Once the correct record is displayed on the screen, press <F7>

to delete. The message "Verify w/F7" will appear at the bottom left

corner of the screen.

Step 4: If you wish to carry out the deletion, press <F7> to confirm

and the data will disappear from the screen. Any key other than <F7>

will abort the delete request.

Step 5: If the template is not already clear, press <ESC> once to

clear it and begin another operation on the PINS data. Press <ESC>

with the template empty to end the program.

A - 15

0

View. If you know the TTL identifier, but are unsure of the

PIN number you are looking for, there are two possibilities:

1. If you can remember the exact way ANY PIN number was entered for

the particular TTL concerned, enter it. Once the record for that pin

is displayed, use <Page Up> and <Page Down>, as described in the TTLS

Data "View", to find all of the records for that TTL. The records will

be grouped together by TTL number.

2. If you cannot remember ANY of the PINs entered for the TTL, it will

be necessary to search the entire PINS relation from the top, or

bottom, as described in the TTLS Data "View."

Error Conditions.

1. No Relation Name Specified on the Command Line.

Indication: The program returns only the system prompt, no data entry

template is displayed.

Correction: the program must know which relation you wish to modify.

Reexecute, specifying TTLS or PINS

2. Illegal Relation Name Specified on the Command Line.

Indication: The error message "Only the PINS and TTLS relations can be

modified using this program" is displayed and the system prompt

returns.

Correction: To protect the integrity of the database to the greatest

A - 16

0

extent possible, only TTLS and PINS may be modified using the Addttl

Utility. The program is not case sensitive, but double check that the

relation names are spelled correctly and reexecute.

3. Attempted Addition of a Pin Record Without an Associated TTL

Record.

Indication: When a pin record is entered, <Fl> is pressed, the error

message "Record not found" appears in the bottom left corner of the

screen.

Correction: For database integrity, the TTL information must be

present before the pin data can be entered. Press <ESC> once to clear

the template and a second time to exit the Addttl program. Reexecute

the program, entering the TTL data first.

A - 17

Index Utility

0 The Index utility is an executable program that rebuilds the

database index files to reflect the contents of its associated data

file. This utility should be used in the event a power failure occurs

* during data manipulation. In the circuit design process, data

manipulation takes place at the following times: retrieving a circuit

design, deleting a circuit design, saving a circuit design, and

* executing the InterConnect Expert (ICE) program. Outside the design

environment, data manipulation takes place during the Addttl process.

The Addttl utility and the ICE program manipulate only TTL data and the

other activities, as their names imply, manipulate only circuit data.

If you are performing any of these activities when a power failure

occurs, you will need to run the Index utility on whichever half of the

database was involved. It is best to run this utility as soon as

possible after power is restored. If you delay, and later

inadvertently try to use the affected data during the circuit design

process, the design environment should remind you which half of the

database needs to be reindexed. This reminder may come at an

inopportune moment, for example when you have just finished work on a

brand new circuit design and find you cannot save it because the

circuit database needs to be reindexed. This would not be a problem

if, as is advisable, you had a second floppy prepared and available to

save it to, but is still best to take care of the situation before

reentering the circuit design environment.

A - 18

0

Indexttl. If the circuit design environment informs you that the TTL

database needs reindexing, or you wish to recover from a power failure

that occurred during ICE or Addttl processing, follow the instructions

given in this section.

In the directory containing the "Indexttl.bat" file, enter:

Indexttl <CR>

This batch file will invoke the Index utility once for each of the

relations containing TTL data. Reindexing can take some time is the

data file is large. Please be patient. The Index utility will print

the following messages on the screen:

* ECHO OFF
Indexing TTLS
Indexing PINS

The system prompt will return when the operation is complete.

Indexckt. If the circuit design environment informs you that the

circuit database needs reindexing, or you wish to recover from a power

failure that occurred while saving, deleting, or retrieving a circuit

design, follow the instructions given in this section.

In the directory containing the "Indexckt.bat" file, place the floppy

containing the affected data in the A drive. Check to make sure the

circuit database files are on the floppy you are using (Check for the

A - 19

0

files listed in Figure A - 1) and, if they are, enter:

Indexckt <CR>

This batch file will invoke the Index utility once for each of the

relations containing circuit data. Reindexing can take some time is

the data file is large. Please be patient. The Index utility will

print the following messages on the screen:

ECHO OFF
Indexing CKTS
Indexing ICONS
Indexing LINKS
Indexing IOUT
Indexing LIN
Indexing LOUT

The system prompt will return when the operation is complete. The

response will be the same even if the circuit files were not ca the

floppy.

Error Conditions. There are no error conditions likely to occur when

reindexing the TTL database. The following error may occur when

reindexing the circuit database:

DOOR OPEN

Indication: Receipt of operating system error message

Error reading drive A
abort,retry or ignore?

Correction: Close the door of the drive and enter "r" for retry.

A - 20

0

Appendix B:

Cdata Functions Used by the DML Module

add-rcd: "Use this function to add a record to a file" (12:125).

Returns an integer status flag.

db cls: This function closes all data base files, flushes the buffers,

and closes the index files (12:130).

dbopen : "Its purpose is to initialize the data base files and their

index files for access by your programs" (12:124). Modified to ignore

the path parameter and look only on the A drive for circuit data and

only on the C drive for TTL data. Modified to return an integer status

flag.

del rcd: "Use this function to delete a record that was previously

retrieved" (12:129). Returns an integer status flag.

epos: "If the data element integer passed as the first parameter is not

is the list (or is zero), then the function returns the length of a

buffer required to hold the data elements in the list" (12:132).

find rcd: This function retrieves a specific record from a file and

stores a copy in a local buffer. Returns an integer status flag

(12:126).

B- 1

init rcd: "Use when you want to initialize a data base file's record

buffer to null values. It sets each data element field in the buffer

to a null-terminated string of spaces" (12:133)"

next rcd: If no prior access has been made to the file, this function

retrieves record corresponding to the lowest index value and places a

copy in a local buffer. "Successive calls to next rcd will deliver the

records in the ascending sequence of the index" (12:128). Returns an

integer status flag.

rcd-fill: Moves selected elements from one data structure to another.

"Data elements that are in the source record and not in the destination

are not moved, and data items that are in the destination record but

not in the source are not disturbed" (12:131).

verify rcd: "Similar to findrcd except that it does not retrieve a

record" (12:126). Returns an integer status flag.

B- 2

Bibliography

1. Adams, Capt Charles A., Jr. A Digital Circuit Design Environment.
MS thesis, AFIT/GCS/ENG/87D-l. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, December
1987 (AD-AI88831).

2. Batory, D.S. and Won Kim. "Modeling Concepts for VLSI CAD Objects,"
ACM Transactions on Database Systems, 10: 322-346 (September 1985).

3. Batory, D.S., Assistant Professor, Personal Correspondence,
Department of Computer Sciences, University of Texas at Austin,
21 June 1988.

4. Chang, Shi-Kuo and T. L. Kunii. "Pictorial Data-Base Systems,"
Computer, 14: 13-21 (November 1981).

5. Deloria, Capt Wayne C. A Digital Logic Simulator with Concurrent
Programing Considerations. MS thesis, AFIT/GCS/ENG/87D-10. School
of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, December 1987 (AD-A188823).

6. Duke, Kieth A. and K. Maling. "ALEX: A Conversational, Hierarchical
Logic Design System," 17th Design Automation Conference
Proceedings. 318-327. Minneapolis: ACM/Sigda and IEEE Computer
Society DATC, 1980.

7. Korth, Henry F. and A. Silberschatz. Database Systems Concepts.
New York: McGraw-Hill Book Company, 1986.

8. Matuszek, Michael L., MS Student, Class GCE-88D. Personal
interviews. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, 1 March through 1
December 1988.

9. McCaskey, John. "Object-Oriented Database Keeps the House in
Order," Electronic Design, 35: 129-134 (March 1987).

10. McKeown, D. M., Jr. and D. J. Reddy. "A Hierarchical Symbolic
Representation for Image Databases," Proceedings of the IEEE
Workshop on Picture Data Description and Management : 40-44.
April 1977.

* 11. Santos, Jorge da Silva, MS Student, Class GCS-88D. Personal
interviews. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, 1 March through 1
December 1988.

12. Stevens, Al. C Database Development. Portland, Oregon: Management
* Information Source, Inc., 1987.

BIB- 1

13. Wagner, iLt Steven M. An Expert System for Discrete Component
Digital Circuit Design. MS thesis, AFIT/GCS/ENG/87D-28. School of
Engineering, Air Force Institute of Technology (AU), Wright-

S Patterson AFB OH, December 1987 (AD-A189680).

BI0

VITA

Captain Sue A. Ehrhart

She graduated from the University of Arizona at Tucson in

1978, vith a Bachelor of-Science Degree in Chemistry. She received her

commission through the Officer Training School (OTS) in April 1980.

After graduation from OTS, she was stationed at Keesler Air Force Base

(AFB), Mississippi, where she attended the Communications-Electronics

Officer School. Upon graduation in April 1981, she was assigned as

Automated Communications Computer Programmer, Strategic Air Command

Total Information Network Applications Section, Data Systems Division,

1st Aerospace Communications Group (AFCC), Offutt AFB, Nebraska. In

June 1984, she was assigned to Headquarters Air Force Operational Test

and Evaluation Center, Kirtland AFB, New Mexico, where she became

Chief, Information Systems Customer Support Branch. In May 1987,

Captain Ehrhart entered the School of Engineering, Air Force Institute

of Technology.

VITA - 1

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE OMBNo. 70 18

l. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2_ Za. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMRER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/ENG/88D-4

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

School of Engineering AFIT/ENA

6c. ADDRESS (City; State, and ZIPCode) 7b. ADDRESS (City, State, and ZIPCode)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMEFNT IDENTIFICATIOW, 7J4TB.
ORGANIZATION None (If applicable)

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE (Include Security Classification)
A Database Management System for Computer-Aided Digital Circuit Design
UNCLASSIFIED

12. PERSONAL AUTHOR(S)
Sue A. Ehrhart, Captain, USAF

13aMPEhe s REPORT 13b. TIME COVERED TO14. DATg P4RT (YeaSMonth,aY) 15. PAGE JQUNT
lWjTP I, REPORT FROM ____TO 8* ~Lecem .er

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Data Bases,

12 05 Computer Aided Design, Circuits

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Thesis Advisor: Bruce L. George, Captain, USAF

Assistant Professor of Electrical Engineering
and Computer Science

Abstract :

This thesis effort documents the design and implementation of a
relational database and associated database management
system (DBMS) for the AFIT digital circuit design environment,
a graphics oriented tool that allows circuits to be designed
at a uniform, chip-level of detail, checked for proper connections,
and simulated...

cont on reverse

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
CUNCLASSIFIED/UNLIMITED 0 SAME AS RPT C DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Bruce L. George, Captain, USAF 513-255-3576 AFIT/ENG

D Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

UNCLASSIFIED

Box 19 continued:

--->The approach to this effort included a survey of existing methods of

Computer-Aided Design (CAD) data management, analysis of the data

and data manipulation requirements of the design environment,

design of a data manipulation language, and implementation of

a DBMS to carry out the manipulations.-Implementation was done

in the C programming language and based bn lower-level database

routines found in C Database Development by Al Stevens.

Limitations encountered as a result of using these routines
are discussed along with the results of testing. This effort
also includes three separate database utility programs. One allows

new TTLs to be added to the database but does not provide the

ability to input the executable functions of those new TTLs.
The second provides the capability to rebuild corrupted index

files, and the third prepares floppy diskettes for data storage.

A user's manual is included for the operation of the database

utility programs. Recommendations for future work are also presented.

UNCLASSIFIED

